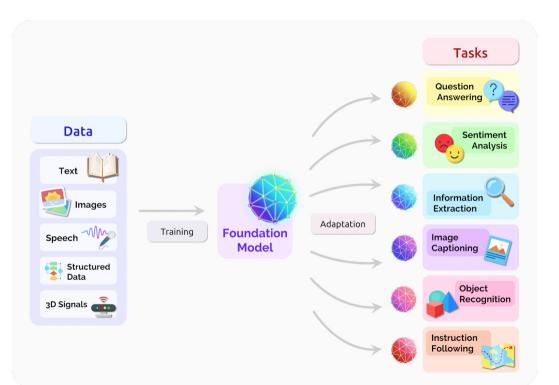


Navigating Privacy Risks in (Large) Language Models

Peter Kairouz – presenting work done with many

PPAI-24: The 5th AAAI Workshop on Privacy-Preserving Artificial Intelligence

The rapidly evolving landscape of foundation models



Bommasani, et al. On the Opportunities and Risks of Foundation Models. Stanford Center for Research on Foundation Models, Stanford Institute for Human-Centered Artificial Intelligence BERT [Oct '18]: Pre-text task with ~340M transformer model

<u>GPT-3</u> [May '20]: Chatbot model at extreme scales (175B)

<u>CLIP</u> [Jan '21]: Image captioning using pre-training tricks inspired by BERT (63M)

DALL·E [Jan '21]: Text-to-image generation with a "mini" GPT-3 (12B)

LaMDA / Bard [Jan '22 / Feb '23]: Language model for dialogue applications (137B)

<u>ChatGPT</u> / <u>GPT-4</u> [Nov '22 / March '23]: Language model for dialogue applications (175B, ~1.8T)

LLaMa / LLaMA-2 [Feb '23 / July '23]: General purpose language models (7, 13, 70B)

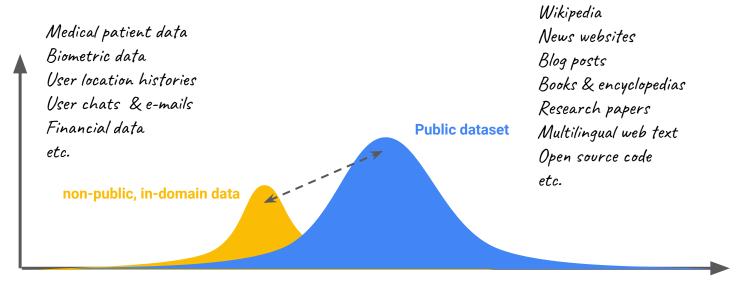
<u>PaLM</u> / <u>PaLM-2</u> [April '22 / May '23]: Language model for dialogue applications (340B)

<u>Gemini-1</u> / <u>Gemini-1.5</u> / <u>Gemma</u> [Dec '23 / Feb '24 / Feb' 24]: A family of (natively multi-modal) foundation language models

These models are so damn good...

So why access non-public data?

training on data from the same distribution that we will be inferencing on ("in-domain data") gives better results



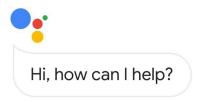
Also evidenced by Google product launches that moved training on-device:

Data minimization!

+24% accuracy

Gboard typing next-word-prediction model trained on on-device data instead of server-side logs.

Turned off server logging!



Sounds good. Let's meet at 350 Third Street,

Cabmbridge later then.

-10% hotword mis-recognition

Google Assistant hotword triggering training with on-device data that isn't sent to datacenters.

Reduced server logging!

+10% Accuracy

SmartSelect identifying long-form entities training from on-screen pixels instead of Wikipedia proxy data.

Never started server logging!

"LLMs don't benefit from training on in domain data"

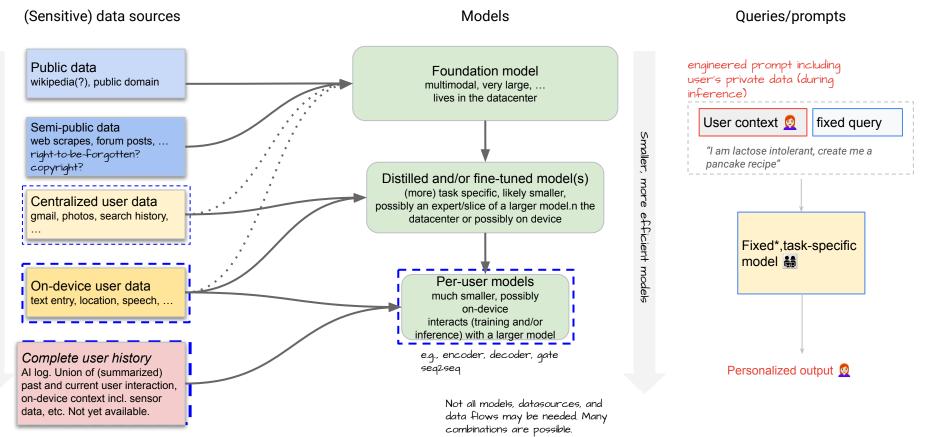
we believe:

High quality in-domain data (possibly privacy sensitive) will be required for accurate and efficient models in production.

In-domain data ⇒ need to worry about privacy!

But whose privacy are we talking about?

Whose privacy are we talking about?



Increasingly privacy sensitive

Privacy principles

More details in **"Federated Learning and Privacy"** Communications of the ACM, April 2022

Privacy principle 1 The User has Transparency and Use-Centric Control For the user (forward-looking transparency, retrospective auditability of computation or release details, control of at least the immediate use of data, e.g. use in training.) Privacy principle 2 Privacy principle 3 Released outputs provide Processing encodes For the **Data Minimization Data Anonymization** platform (security, access control, focused collection, TTLs, ...) (differential privacy (DP), memorization auditing, ...) Privacy principle 4 Privacy claims are verifiable For the verifiers ideally by the users themselves, by external auditors, and the service provider

Privacy principles

More details in **"Federated Learning and Privacy"** Communications of the ACM, April 2022

For the user

The User has Transparency, Auditability, and Control

of what data is used, what purpose it is used for, and how it is processed. (forward-looking transparency, retrospective auditability of computation or release details, control of at least the immediate use of data, e.g. use in training.)

For the platform

Processing encodes *Data Minimization*

(security, access control, focused collection, TTLs, ...)

Released outputs provide *Data Anonymization*

(differential privacy (DP), memorization auditing, ...)

For the verifiers

Privacy claims are Verifiable

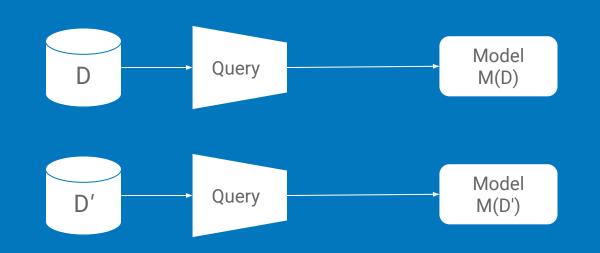
ideally by the users themselves, by external auditors, and the service provider

Differential Privacy

For ML: Randomized training algorithm.

When you change one **X** in the training data, the distribution of output models hardly changes

(changes by a quantifiably small amount).



(ε, δ)-Differential Privacy: The distribution of the output M(D) on database D is nearly the same as
M(D') for all adjacent databases D and D' (differ by one unit X)

 $\forall S: \Pr[M(D) \in S] \le \exp(\varepsilon) \cdot \Pr[M(D') \in S] + \delta$

Example: units of privacy for language models

When you change one X in the training data, the distribution of output models hardly changes. What is X?

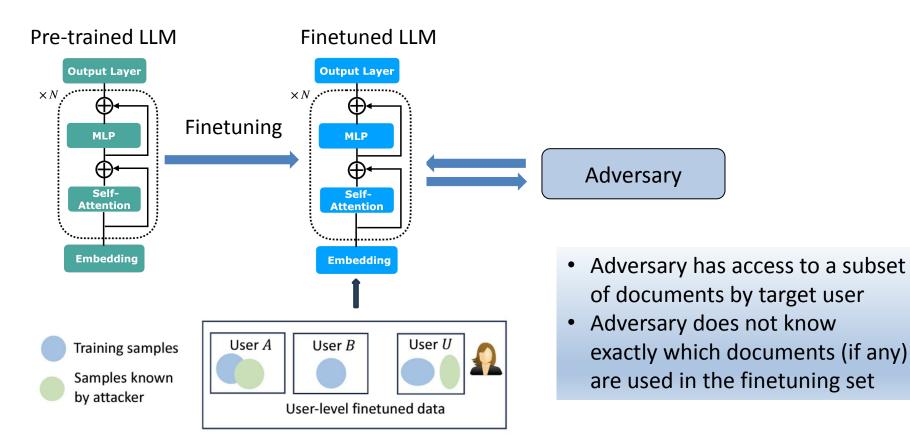
- token-level DP (character, wordpiece, word)
- **example**-level DP (sequence of tokens that form a row in a batch)
- paragraph-level DP
- document-level DP
- user-level DP
- organization-level DP

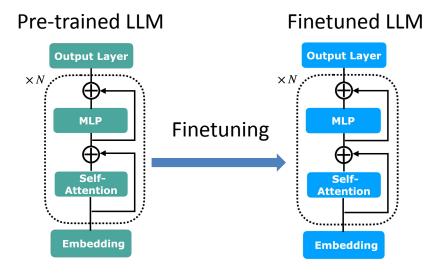
(Exponentially) stronger privacy at fixed **ɛ** Closest to **standard ML infra and algorithms**, but still not a perfect fit.

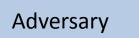
"Multi-example" notions of privacy, supported by **federated learning algorithms**. We focus on user-level, but the techniques apply to all these notions (incl. example-level).

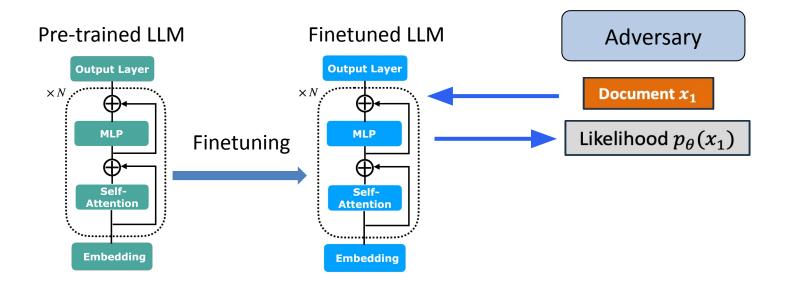
Google

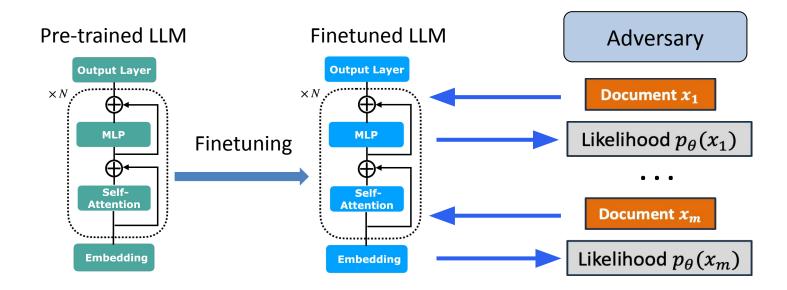
User inference: attacker knowledge

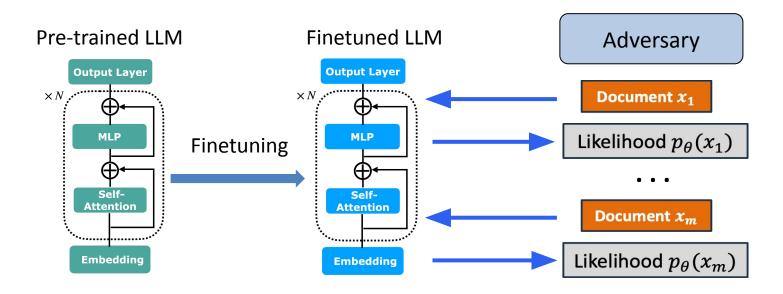




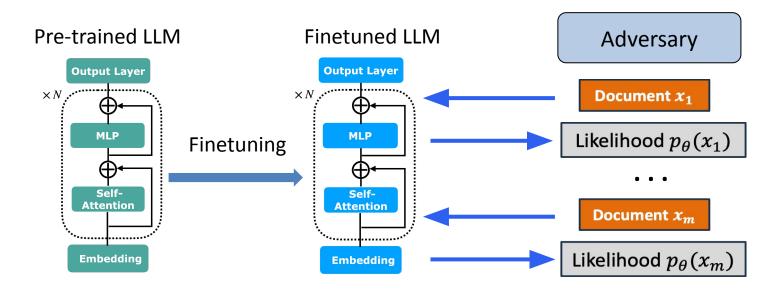








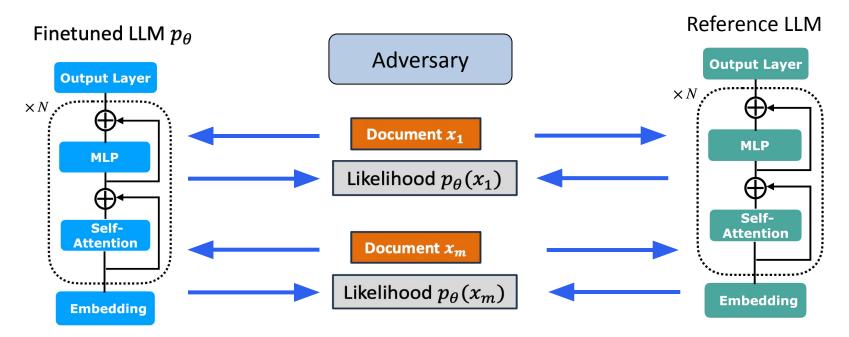
If average log likelihood $\frac{1}{m} \sum_{i=1}^{m} \log p_{\theta}(x_i)$ is high, user was in finetuning



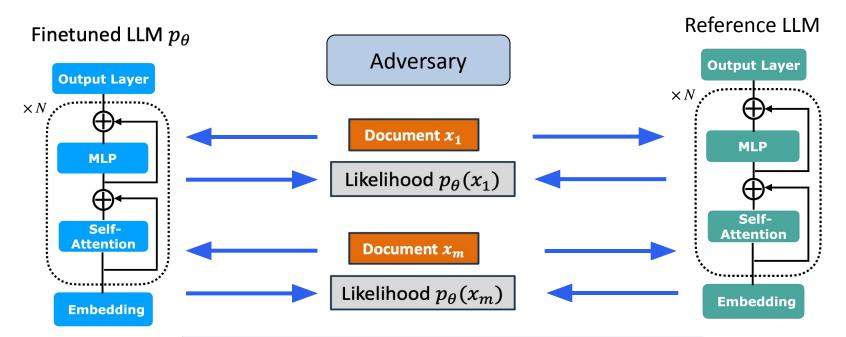
If average log likelihood $\frac{1}{m} \sum_{i=1}^{m} \log p_{\theta}(x_i)$ is high, user was in finetuning

Will suffer from high false positives because it's possible some sequences are "easy to predict" (i.e. appear elsewhere in the wild) 18

Calibrated user inference attack

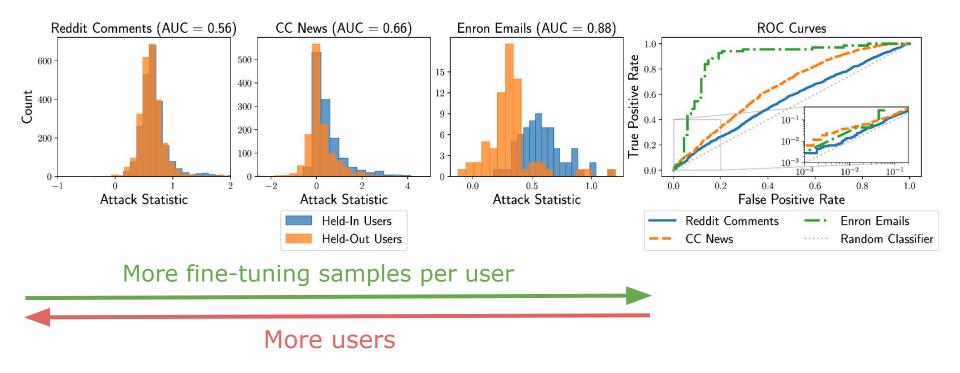


Calibrated user inference attack



Compute **calibrated** average log likelihood $T(x_1, ..., x_m) = \frac{1}{m} \sum_{i=1}^m \log \frac{p_{\theta}(x_i)}{p_{ref}(x_i)}$ User U was in finetuning if $T(x_1, ..., x_m) > \tau$

Attack success on different datasets

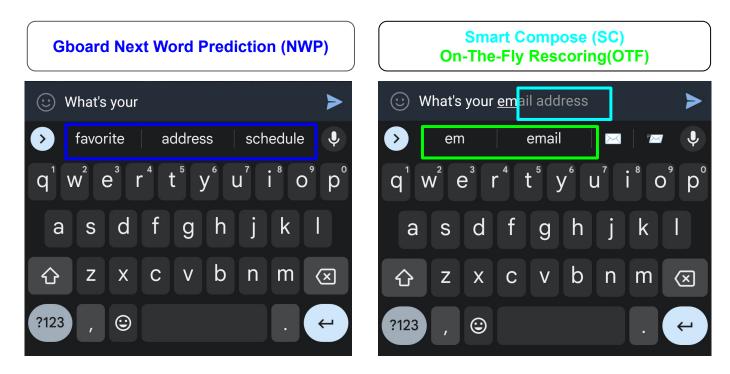


User Inference Attacks on Large Language Models, Kandpal et al., arxiv: 2310.09266

This demonstrates the importance of training with user-level DP!

And that's exactly what we have been doing for years with Gboard..

Case study: Gboard language models

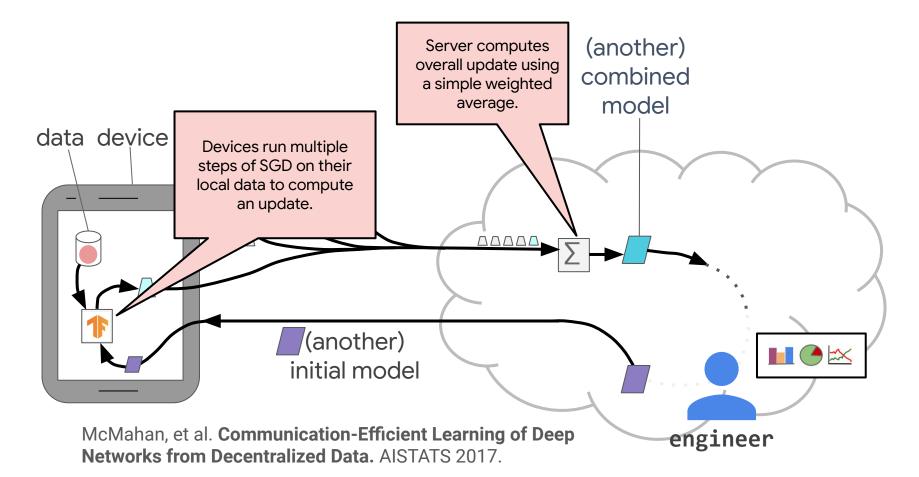


NWP LM: ~2.4M / 4.4M parameters

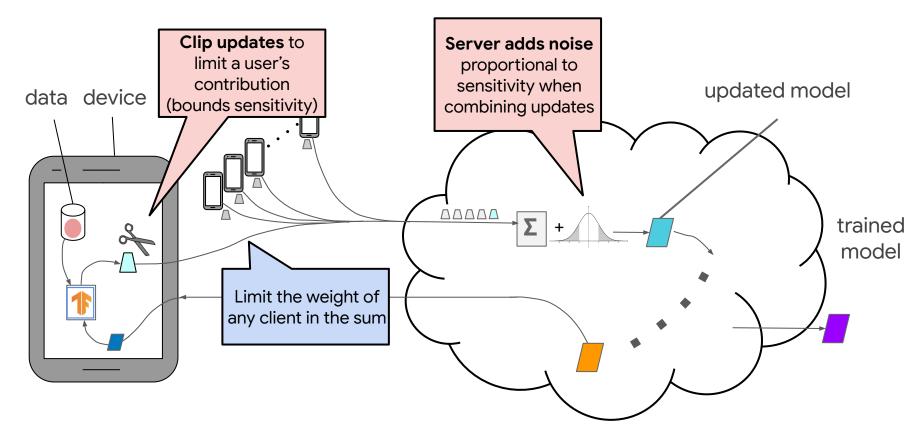
OTF LM: ~6.4M parameters

Google

Federated Averaging (FedAvg) algorithm

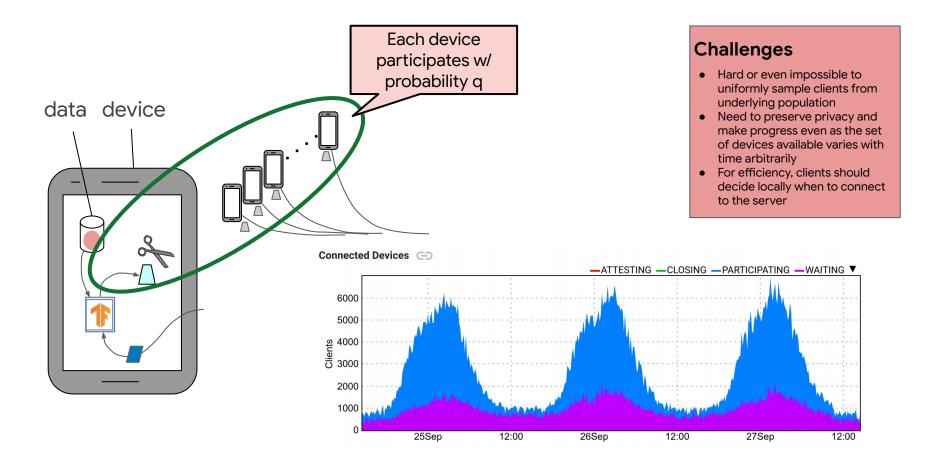


Differentially Private Federated Averaging (DP-FedAvg)



Mcmahan, Ramage, Talwar, Zhang. Learning Differentially Private Recurrent Language Models. ICLR 2018

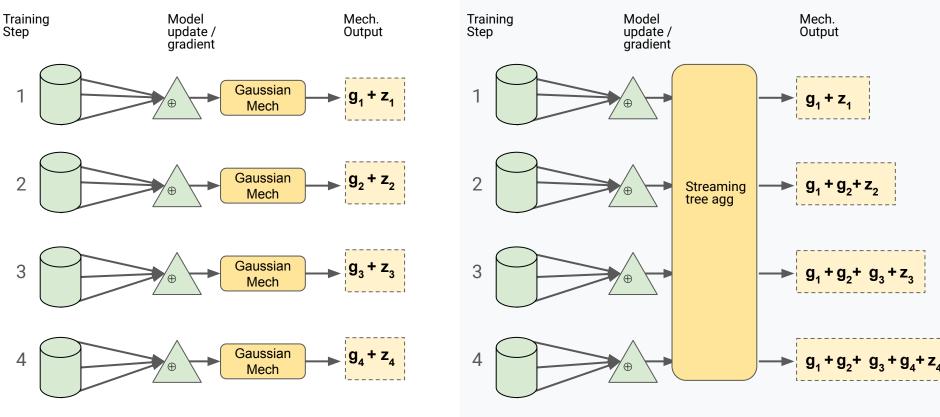
Differentially Private Federated Averaging (DP-FedAvg)



DP FedAvg

DP-FTRL

Kairouz, McMahan, Song, Thakkar, Thakurta, Xu. **Practical and Private (Deep) Learning** without Sampling or Shuffling. ICML 2021



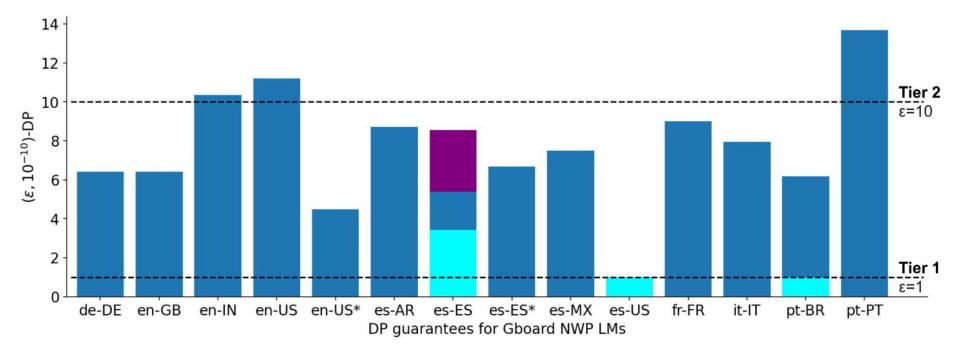
- Independent noise is added to each round
- Relies heavily on amplification-by-sampling

- **Correlated noise** is added in each round
- Competitive with DP-FedAvg w/ amplification.

"All the next word prediction neural network LMs in Gboard now have DP guarantees, and all future launches of Gboard neural network LMs will require DP guarantees."

> <u>Federated Learning of Gboard Language Models with</u> <u>Differential Privacy</u>, June 2023

Strong DP guarantees with eps < 1!

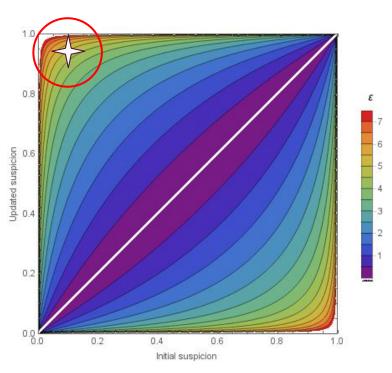


DP guarantees for Gboard NWP LMs (the purple bar represents the first es-ES launch of ε =8.9; cyan bars represent privacy improvements for models trained with <u>MF-DP-FTRL</u>; <u>tiers</u> are from "<u>How to DP-fy ML</u>" guide; en-US* and es-ES* are additionally trained with SecAgg).

Google

Is it okay to train with large-ish epsilons?

publication/application	ε
U.S. 2020 Census	19.6
High-accuracy image classification (De et al., 2022)	8
FL training of GBoard language models (Xu et al., 2023)	0.99–13.69



For ε =5, attacker can go from a low suspicion of 10% to a very high degree of certainty (94%).

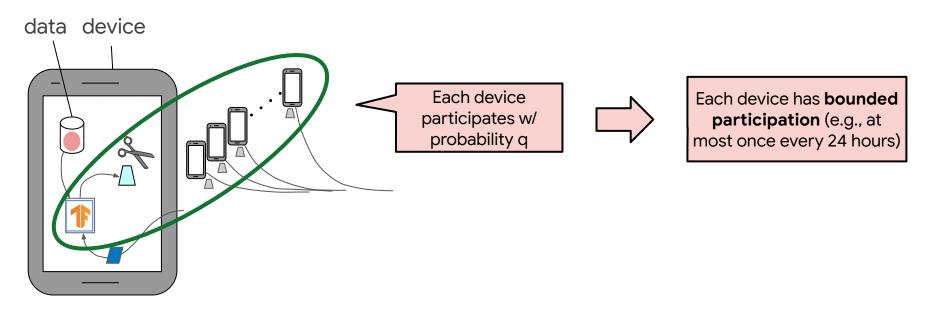
https://desfontain.es/privacy/differential-privacy-in-more-detail.html

The DP threat model assumes:

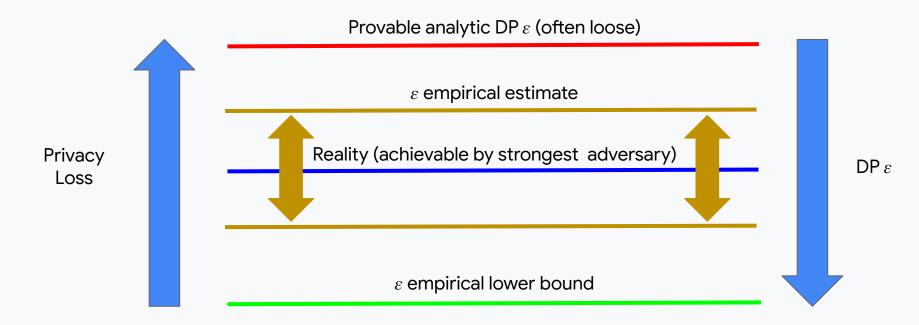
- 1. Worst case dataset pair **D**, **D**'
- 2. An adversary who is trying to distinguish between **D**, **D**' (1 bit of information)
- 3. An infinitely powerful adversary, both computationally and statistically
- 4. An adversary who has (white-box) access to the model parameters
- 5. An adversary who sees all the model iterates in all rounds
- 6. Worst case participation pattern e.g. may not take full advantage of data sampling/shuffling

The DP threat model assumes:

- 1. Worst case dataset pair **D**, **D**'
- 2. An adversary who is trying to distinguish between **D**, **D'** (1 bit of information)
- 3. An infinitely powerful adversary, both computationally and statistically
- 4. An adversary who has (white-box) access to the model parameters
- 5. An adversary who sees all the model iterates in all rounds
- 6. Worst case participation pattern e.g. may not take full advantage of data sampling/shuffling

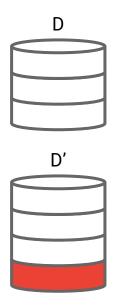


Empirical ε estimation

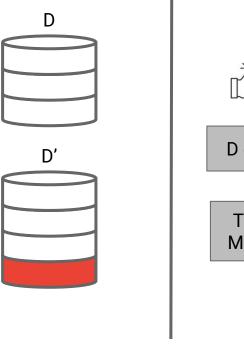


- Threat model may be too strong (e.g., release all model iterates)
- Analytical ε bound may not be tight

Basic empirical privacy auditing [Jagielski et al. 2020]



Basic empirical privacy auditing [Jagielski et al. 2020]

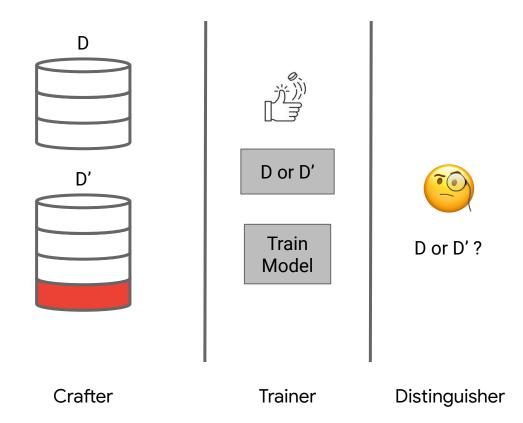


D or D'

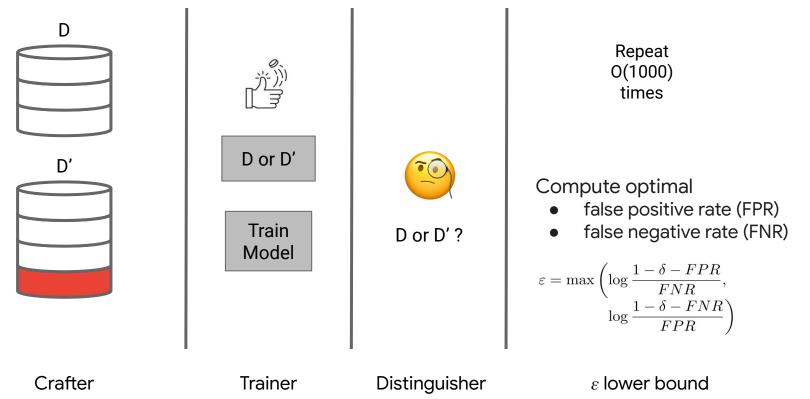
Train Model

Crafter

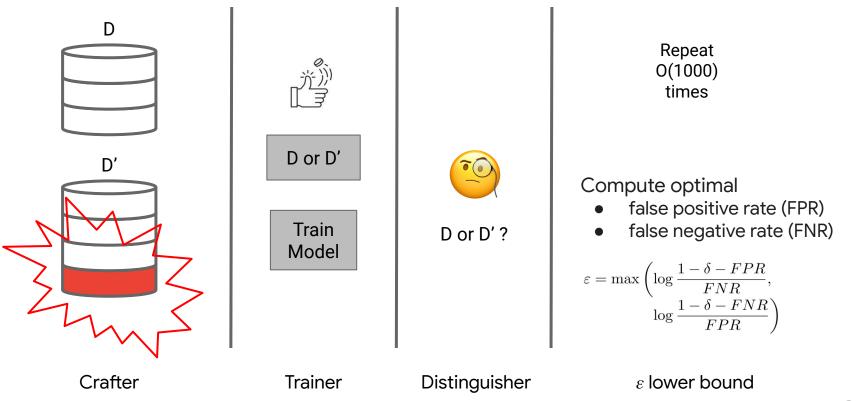
Basic empirical privacy auditing [Jagielski et al. 2020]



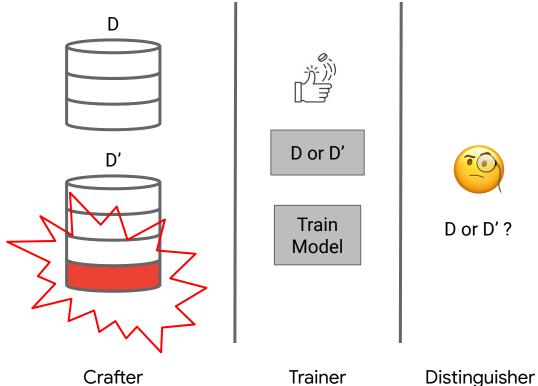
Basic empirical privacy auditing [Jagielski et al. 2020]

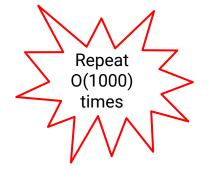


Basic empirical privacy auditing [Jagielski et al. 2020]



Basic empirical privacy auditing [Jagielski et al. 2020]





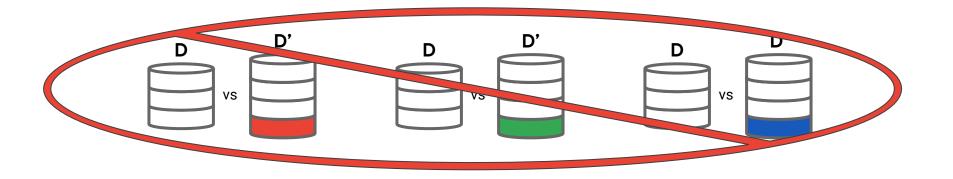
Compute optimal

- false positive rate (FPR)
- false negative rate (FNR)

$$\varepsilon = \max\left(\log\frac{1-\delta-FPR}{FNR}, \\ \log\frac{1-\delta-FNR}{FPR}\right)$$

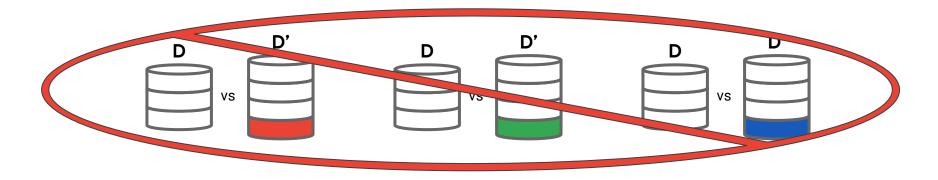
 ε lower bound

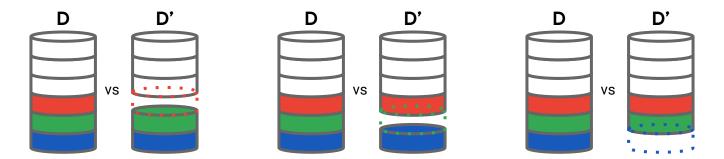
Idea 1: rather than the classical "one canary" in D'



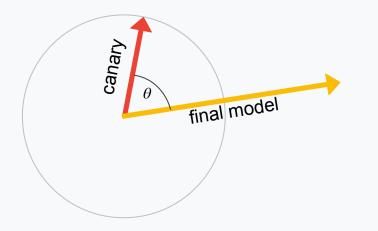
Andrew et al., 2023. One-shot empirical privacy estimation for Federated Learning. ICLR (Oral) 2024

Idea 1: leave one out (LOO) construction of datasets

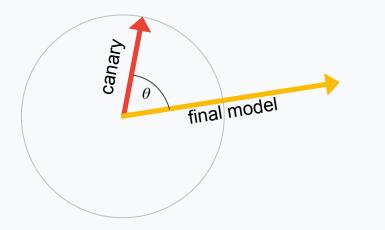




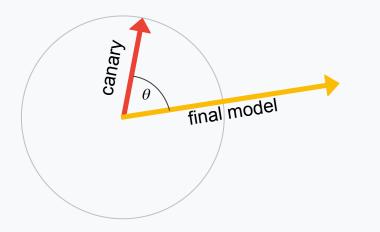
Andrew et al., 2023. One-shot empirical privacy estimation for Federated Learning. ICLR (Oral) 2024



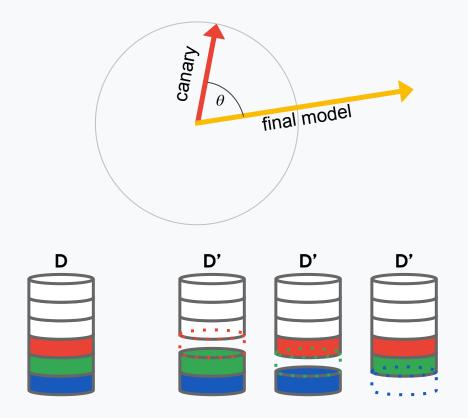
• Canary updates chosen uniformly from unit d-sphere (model dim d)



- Canary updates chosen uniformly from unit d-sphere (model dim d)
- Distinguisher decides based on cosine to final model



- Canary updates chosen uniformly from unit d-sphere (model dim d)
- Distinguisher decides based on cosine to final model
- Model memorizes random updates ⇒ higher canary/model cosines ⇒ higher ε estimates



- Canary updates chosen uniformly from unit d-sphere (model dim d)
- Distinguisher decides based on cosine to final model
- Model memorizes random updates \Rightarrow higher canary/model cosines \Rightarrow higher ε estimates
- Null distribution of unobserved canary cosine:
 - does not depend on model
 - is computable in closed form

D

One dataset with *k* random canaries inserted

Crafter

One dataset with *k* random

canaries inserted

D

Canaries participate in same pattern as real users

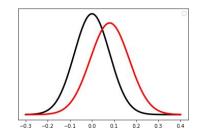
Train single

model once

Crafter

D One dataset with *k* random canaries Train single model once

Canaries participate in same pattern as real users Null hypothesis cosine distribution *N*(0, 1/*d*)



Normal approximation to canary cosine sample distribution

Crafter

inserted

Trainer

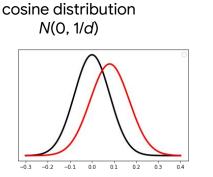
Distinguisher

One dataset with *k* random canaries

D

Train single model once

Canaries participate in same pattern as real users



Null hypothesis

Normal approximation to canary cosine sample distribution

Analytically compute ε comparing two Gaussian distributions

Crafter

inserted

Trainer

Distinguisher

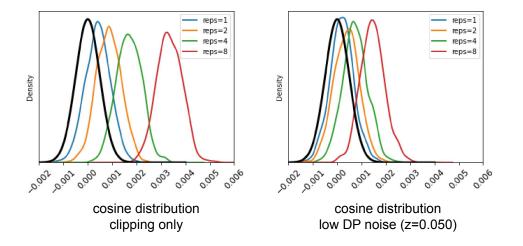
Estimate ε

One-shot method is "correct" for Gaussian Mechanism

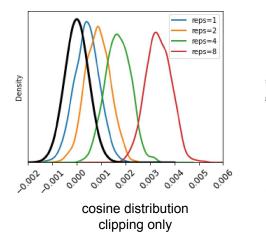
- Gaussian sum is building block of DP-SGD and DP-FedAvg
- Theorem:
 - If model dim d and # of canaries k are high enough (say d=10⁶, $k=10^3$)
 - Run Gaussian sum mechanism with added canaries
 - Estimate ε of Gaussian mechanism from canary cosine distribution
 - With high probability, recover ε close to the true ε of the mechanism

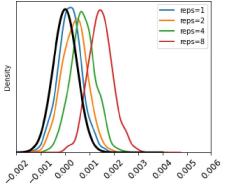
- Model dim 4.1M, 341k clients, one "epoch"
- Replicate canaries 1, 2, 4, 8 times
- Also compare to modified algorithm to estimate ε from all model iterates

- Model dim 4.1M, 341k clients, one "epoch"
- Replicate canaries 1, 2, 4, 8 times
- Also compare to modified algorithm to estimate ε from all model iterates



- Model dim 4.1M, 341k clients, one "epoch"
- Replicate canaries 1, 2, 4, 8 times
- Also compare to modified algorithm to estimate ε from all model iterates



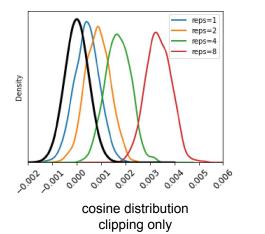


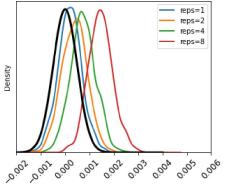
cosine distribution low DP noise (z=0.050)

Noise	analytical ε	ε_{est} -all	ε_{est} -final
0	∞	45800	4.60
0.050	300	382	1.97
0.099	100	89.4	1.18
0.232	30	2.693	0.569

 ε estimates, from single repetition of canary. ε -all uses all model iterates, ε -final uses only final

- Model dim 4.1M, 341k clients, one "epoch"
- Replicate canaries 1, 2, 4, 8 times
- Also compare to modified algorithm to estimate ε from all model iterates





cosine distribution low DP noise (z=0.050)

Noise	analytical ε	ε_{est} -all	ε_{est} -final
0	∞	45800	4.60
0.050	300	382	1.97
0.099	100	89.4	1.18
0.232	30	2.693	0.569

 ε estimates, from single repetition of canary. ε -all uses all model iterates, ε -final uses only final

Please don't overfit to DP's threat model!

Realistic attack, harder for adversary

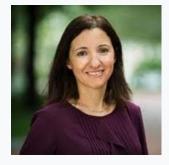
Less realistic attack, easier for adversary

To 'win', adversary must learn 	Many bits of example		One bit of example	One bit about user
During training, adversary controls	(nothing)	Some examples	Some example gradients	Full dataset
Adversary has access to	Final model (black box)	Final model (loss)	Final model parameters	All model iterates
Adversary starts with knowledge of	Short prefix	Complete examples	Full dataset	
Adversary tries to learn about data that is	Distributed naturally		Out-of- distribution	Any / worst-case
Adversary tries to learn a single secret replicated in	A single All of one user's examples example		nples	All examples of small group

Thank you! Questions?

Google

Krishna Pillutla Google



Alina Oprea Northeastern & Google

Galen Andrew Google

Sewoong Oh UW & Google

Christopher Choquette Google

Zheng Xu Google

Brendan McMahan Google